Advanced Quantum Mechanics

Summer Term 2023 David Gross, Johan Åberg
Mock Exam

Support for the memory:

$$
\begin{align*}
& \sigma_{0}=\hat{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \sigma_{1}=\sigma_{x}=X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{2}=\sigma_{y}=Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{3}=\sigma_{z}=Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \tag{1}
\end{align*}
$$

-

$$
\begin{equation*}
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad a|n\rangle=\sqrt{n}|n-1\rangle \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& {[A, B]_{\xi}=A B-(-1)^{\xi} B A} \\
& {\left[a_{j}, a_{k}^{\dagger}\right]_{\xi}=\delta_{j k} \hat{1}, \quad\left[a_{j}, a_{k}\right]_{\xi}=0, \quad\left[a_{j}^{\dagger}, a_{k}^{\dagger}\right]=0} \tag{4}\\
& \xi=0 \quad \text { bosons, } \quad \xi=1 \quad \text { fermions }
\end{align*}
$$

-

$$
\begin{equation*}
\partial_{t}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \psi_{l}\right)}\right)+\partial_{j}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{j} \psi_{l}\right)}\right)-\frac{\partial \mathcal{L}}{\partial \psi_{l}}=0, \quad l=1, \ldots, N \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
E^{2}=m^{2}+\|\boldsymbol{p}\|^{2} \tag{6}\\
\eta=\left[\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & & -1
\end{array}\right] \tag{7}
\end{gather*}
$$

$$
\begin{equation*}
\left(\partial_{t}^{2}-\sum_{j} \partial_{j}^{2}+m^{2}\right) \psi=0 \quad \text { or equivalently } \quad\left(\partial^{\mu} \partial_{\mu}+m^{2}\right) \psi=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
i \partial_{t} \psi=-i \alpha^{j} \partial_{j} \psi+m \beta \psi \quad \text { or equivalently } \quad\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \tag{9}
\end{equation*}
$$

1 The reduced density operator

Consider two (distinguishable) quantum systems with Hilbert spaces $\mathcal{H}^{(1)}$ and $\mathcal{H}^{(2)}$, respectively. The Hilbert space of the joint system is $\mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)}$. Suppose that the joint system is in a pure state, with the state vector

$$
\begin{equation*}
|\psi\rangle=\frac{1}{2}|0\rangle_{1} \otimes|1\rangle_{2}+\frac{\sqrt{3}}{2}|1\rangle_{1} \otimes|0\rangle_{2} \tag{10}
\end{equation*}
$$

where $|0\rangle_{1},|1\rangle_{1}$ is an orthonormal set in $\mathcal{H}^{(1)}$, and $|0\rangle_{2},|1\rangle_{2}$ is an orthonormal set in $\mathcal{H}^{(2)}$.
a) What is the reduced density operator of system 1 ?

Determine whether the reduced state is mixed or pure. (Tell how you reach your conclusion.)
b) Suppose that $|0\rangle,|1\rangle$ are the eigenstates of the Pauli σ_{z}-operator (for both systems 1 and 2).

What is the expectation value of $\sigma_{x}^{(1)}=|0\rangle_{1}\langle 1|+|1\rangle_{1}\langle 0|$, i.e., the Pauli x operator on system 1 . The state is the same as in a).

2 Equivalence of circuits

Show the following equivalence

Hint: Recall that circuits are read from the left to the right.

3 Identical particles

Suppose that we have two identical particles along a line, with coordinates $x_{1}, x_{2} \in \mathbb{R}$. Let $r=x_{2}-x_{1}$ be the relative coordinate between the two particles. Ignoring the motion of the center of mass, the two lowest energy eigenstates of these two particles are described by the wave functions

$$
\begin{equation*}
\psi_{a}(r)=\mathcal{N}_{a} \cos (\beta r) e^{-\alpha r^{2}}, \quad \psi_{b}(r)=\mathcal{N}_{b} \sin (\beta r) e^{-\alpha r^{2}}, \tag{11}
\end{equation*}
$$

where $\alpha>0, \beta \in \mathbb{R}$, and $\mathcal{N}_{a}, \mathcal{N}_{b}$ are normalization factors. Here ψ_{a} corresponds to energy eigenvalue E_{a}, and ψ_{b} to energy eigenvalue E_{b}, with $E_{a}<E_{b}$.
a) What is the ground state energy if the two particles are spinless bosons?
b) What is the ground state energy if the two particles are spinless fermions?
c) What is the ground state energy if the two particles are spin-half fermions? Are the two spins in a singlet-state or a triplet state, when the two particles are in the ground state?

Justify your answers!

4 Conservation of particle-number for one-body Hamiltonians

Suppose that we have a Hamilton operator of the form

$$
\begin{equation*}
\hat{H}=\int \psi^{\dagger}(\vec{x}) \vec{\nabla}_{\vec{x}}^{2} \psi(\vec{x}) d^{3} x, \tag{12}
\end{equation*}
$$

where $\psi(\vec{x})$ and $\psi^{\dagger}(\vec{x})$ are fermionic or bosonic field operators in the position representation. We define the total number operator as

$$
\begin{equation*}
\hat{N}=\int \psi^{\dagger}(\vec{x}) \psi(\vec{x}) d^{3} x . \tag{13}
\end{equation*}
$$

Show that $[\hat{N}, \hat{H}]=0$ in both the bosonic and fermionic case.

5 Derivation of the Klein-Gordon equation

The Klein-Gordon field has the classical Lagrange density

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left[\partial_{\mu} \phi \partial^{\mu} \phi-m^{2} \phi^{2}\right]=\frac{1}{2}\left[\partial_{\mu} \phi g^{\mu \nu} \partial_{\nu} \phi-m^{2} \phi^{2}\right] \tag{14}
\end{equation*}
$$

Use the Euler-Lagrange equations to derive the equation of motion. Note that we here use the Einstein summation convention. When quantizing this theory, what is the particle statistics of the quantized exications?

6 Dirac equation

The Dirac equation can be written in the form

$$
\begin{equation*}
i \frac{\partial}{\partial t} \Psi=-i \sum_{l=1}^{3} \alpha^{l} \partial_{l} \Psi+m \beta \Psi \tag{15}
\end{equation*}
$$

where Ψ is a spinor, and where we have put $\hbar=1$ and $c=1$.
Make an ansatz in the form of plane waves in (15)

$$
\Psi_{\vec{p}}(t, \vec{r})=w e^{-i\left[E_{\vec{p}} t-\vec{p} \cdot \vec{r}\right]}, \quad w=\left[\begin{array}{l}
w_{1} \tag{16}\\
w_{2} \\
w_{3} \\
w_{4}
\end{array}\right] .
$$

By inserting $\Psi_{\vec{p}}$ into (15), and using the representation where

$$
\alpha^{k}=\left[\begin{array}{cc}
0 & \sigma_{k} \tag{17}\\
\sigma_{k} & 0
\end{array}\right], \quad \beta=\left[\begin{array}{cc}
\mathbb{I} & 0 \\
0 & -\mathbb{I}
\end{array}\right],
$$

the Dirac equation (15) reduces to an eigenvalue problem for the vectors w, i.e, $M w=E_{\vec{p}} w$.
a) Determine the matrix M. (It is enough to express this matrix in terms of the Pauli matrices σ_{k} and the identity matrix I.)
b) Determine an orthonormal set of eigenvectors of M for particles at rest, i.e., plane-wave solutions with momentum $\vec{p}=0$. Identify the positive and negative energy solutions.

