Advanced Quantum Mechanics
 David Gross and Johan Åberg
 Institut für Theoretische Physik, Universität zu Köln
 SS 2023
 Exercise sheet $1 \quad$ Due: Sunday April 9 at 24:00

This sheet is a recap, so you might want to look up old lecture notes. You can also take a look at the appendices of the current lecture notes.

1 Operators, matrices and functions

In this exercise we take a look at the relation between operators and their matrix-representations. For the sake of extra clarity, we will in this exercise put a hat, \hat{Q} on the operators, while denoting their matrix representations with bold letter $Q .{ }^{1}$ Recall that for an orthonormal basis $\left\{\left|a_{k}\right\rangle\right\}_{k}$ we have the orthonormality condition $\left\langle a_{k^{\prime}} \mid a_{k}\right\rangle=\delta_{k, k^{\prime}}$ and the resolution of identity $\sum_{k}\left|a_{k}\right\rangle\left\langle a_{k}\right|=\hat{1}$.
a) Use the resolution of identity to show that an operator \hat{Q} and its matrix representation $Q_{k^{\prime}, k}^{(a)}=$ $\left\langle a_{k^{\prime}}\right| \hat{Q}\left|a_{k}\right\rangle$ in the basis $\left\{\left|a_{k}\right\rangle\right\}_{k}$ are related as

$$
\hat{Q}=\sum_{k^{\prime}, k} Q_{k^{\prime}, k}^{(a)}\left|a_{k^{\prime}}\right\rangle\left\langle a_{k}\right| .
$$

(1 point)
b) Let $\left\{\left|b_{l}\right\rangle\right\}_{l}$ be an additional orthonormal basis. Let $Q_{l^{\prime}, l}^{(b)}=\left\langle b_{l^{\prime}}\right| \hat{Q}\left|b_{l}\right\rangle$ be the matrix representation in basis $\left\{\left|b_{l}\right\rangle\right\}_{l}$. Express $\boldsymbol{Q}_{l^{\prime}, l}^{(b)}$ in terms of $\boldsymbol{Q}_{k^{\prime}, k^{\prime}}^{(a)}$.
(2 points)
c) Let Q be the matrix representation of \hat{Q}, i.e., Q has matrix elements $Q_{k^{\prime}, k}=\left\langle a_{k^{\prime}}\right| \hat{Q}\left|a_{k}\right\rangle$, where we have skipped the superscript (a). Show that

$$
\hat{Q}^{n}=\sum_{k^{\prime}, k}\left|a_{k^{\prime}}\right\rangle\left(Q^{n}\right)_{k^{\prime}, k}\left\langle a_{k}\right|, \quad n=1,2, \ldots
$$

Hint: One can for example use a proof by induction.
(3 points)
d) Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ (or $f: \mathbb{C} \rightarrow \mathbb{C}$) there are various methods to define the function $f(\hat{Q})$ of an operator \hat{Q} (or the function $f(\boldsymbol{Q})$ of a (square) matrix Q). If f possesses a (welldefined) Taylor expansion $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$, a common method is to define

$$
f(\hat{Q}):=\sum_{n=0}^{\infty} c_{n} \hat{Q}^{n}, \quad f(Q):=\sum_{n=0}^{\infty} c_{n} Q^{n} .
$$

If $Q_{k^{\prime}, k}=\left\langle a_{k^{\prime}}\right| \hat{Q}\left|a_{k}\right\rangle$ for an an orthonormal basis $\left\{\left|a_{k}\right\rangle\right\}_{k}$, show that

$$
\begin{equation*}
\hat{Q}=\sum_{k^{\prime}, k}\left|a_{k^{\prime}}\right\rangle \boldsymbol{Q}_{k^{\prime}, k}\left\langle a_{k}\right| \quad \Rightarrow \quad f(\hat{Q})=\sum_{k^{\prime}, k}\left|a_{k^{\prime}}\right\rangle(f(Q))_{k^{\prime}, k}\left\langle a_{k}\right| . \tag{1}
\end{equation*}
$$

Hint: Beware of the difference between the operator \hat{Q} and the matrix Q. Also, there was a reason for why we bothered to do c).
(2 points)

[^0]e) A particularly useful special case of (1) is if $\left\{\left|a_{k}\right\rangle\right\}_{k}$ diagonalizes \hat{Q}, i.e., that $\hat{Q}=\sum_{k}\left|a_{k}\right\rangle q_{k}\left\langle a_{k}\right|$ for some (possibly complex) numbers q_{k}. Show that in this case
\[

$$
\begin{equation*}
f(\hat{Q})=\sum_{k}\left|a_{k}\right\rangle f\left(q_{k}\right)\left\langle a_{k}\right| . \tag{2}
\end{equation*}
$$

\]

Hint: There is more than one route to show this, but you could think of how the matrix representation Q looks like in this case, and then how Q^{n} looks like.
(2 points)
Remark: For operators that have an eigenvalue decomposition, (2) can be regarded as an alternative definition of $f(\hat{Q})$.

2 The position and momentum representations

Let $\{|\vec{x}\rangle\}_{\vec{x} \in \mathbb{R}^{3}}$ be joint 'eigenstates' of the position operators $\hat{\bar{X}}=\left(\hat{X}_{1}, \hat{X}_{2}, \hat{X}_{3}\right)$, i.e., $\hat{\vec{X}}|\vec{x}\rangle=\vec{x}|\vec{x}\rangle$. Analogously, let $\{|\vec{k}\rangle\}_{\vec{k} \in \mathbb{R}^{3}}$ be joint 'eigenstates' of the momentum operators $\hat{\vec{P}}=\left(\hat{P}_{1}, \hat{P}_{2}, \hat{P}_{3}\right)$. For these objects we have the orthonormality relations and resolutions of identity

$$
\begin{array}{ll}
\left\langle\vec{x}^{\prime} \mid \vec{x}\right\rangle=\delta\left(\vec{x}^{\prime}-\vec{x}\right), & \int|\vec{x}\rangle\langle\vec{x}| d^{3} x=\hat{1}, \\
\left\langle\vec{k}^{\prime} \mid \vec{k}\right\rangle=\delta\left(\vec{k}^{\prime}-\vec{k}\right), & \int|\vec{k}\rangle\langle\vec{k}| d^{3} k=\hat{1} .
\end{array}
$$

a) Use the resolution of identity to show that an operator \hat{Q} and its position representation $Q\left(\vec{x}^{\prime}, \vec{x}\right)=$ $\left\langle\vec{x}^{\prime}\right| \hat{Q}|\vec{x}\rangle$ are related as

$$
\hat{Q}=\iint Q\left(\vec{x}^{\prime}, \vec{x}\right)\left|\vec{x}^{\prime}\right\rangle\langle\vec{x}| d^{3} x^{\prime} d^{3} x
$$

(1 point)
b) Determine the momentum representation $\vec{P}\left(\vec{k}^{\prime}, \vec{k}\right)=\left\langle\overrightarrow{k^{\prime}}\right| \hat{\vec{P}}|\vec{k}\rangle$ of the momentum operator \hat{P}. (1 point) Remark: Note that $\hat{\vec{P}}=\left(\hat{P}_{1}, \hat{P}_{2}, \hat{P}_{3}\right)$ is a vector-operator, and as a consequence $\vec{P}\left(\vec{k}^{\prime}, \vec{k}\right)$ is vector-valued function. This can be compared with \hat{Q} in a) which only is a single operator, with the consequence that $Q\left(\vec{x}^{\prime}, \vec{x}\right)$ is a scalar function.
c) Assume that

$$
\begin{equation*}
\langle\vec{x} \mid \vec{k}\rangle=(2 \pi)^{-3 / 2} e^{i \vec{k} \cdot \vec{x}} . \tag{3}
\end{equation*}
$$

Express the position representation $\vec{P}\left(\vec{x}^{\prime}, \vec{x}\right)=\langle\vec{x}| \hat{\vec{x}}|\vec{x}\rangle$ in terms of the momentum representation $\vec{P}\left(\vec{k}^{\prime}, \vec{k}\right)$. Next, insert the result in b) to express $\vec{P}\left(\vec{x}^{\prime}, \vec{x}\right)$ as an integral over \vec{k}.
(3 points)
d) Use (3) to show that

$$
\delta\left(\vec{x}^{\prime}-\vec{x}\right)=(2 \pi)^{-3} \int e^{i \vec{k}\left(\vec{x}^{\prime}-\vec{x}\right)} d^{3} k
$$

(2 points)
e) Show that

$$
\begin{equation*}
\left\langle\vec{x}^{\prime}\right| \hat{\vec{P}}|\psi\rangle=-i \vec{\nabla}_{\vec{x}^{\prime}} \psi\left(\vec{x}^{\prime}\right) \tag{4}
\end{equation*}
$$

[^0]: ${ }^{1}$ It is quite common in the literature to put hats on operators, but we won't use this in a consistent manner in this course.

