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1 Coherent states of oscillators and fields

As discussed briefly in section 3.3.2 of the lecture notes, coherent field states somehow resembles
classical fields. For quantum harmonic oscillators, the evolution of coherent states shadows that of
the corresponding classical oscillator. Since the free EM field can be regarded as an infinite collection
of harmonic oscillators, it is maybe not surprising that there is a similar correspondence. Here we
shall explore this. Apart from the physical relevance, coherent states are also very useful, and pop
up in all kinds of places, so it is in any case good to know about them.

For a single mode, the family of coherent states can be written

|α〉 = e−
1
2 |α|2

∞

∑
n=0

αn
√

n!
|n〉

for any α ∈ C.

a) What is the overlap 〈α|β〉? Express |〈α|β〉|2 in terms of |α − β|2. What does this say about the
approximate orthogonality of |α〉 and |β〉 as |α− β|2 grows? (2points)

b) Recall that the quantum vector potential is

A(x, t) =

√
h̄

ε0L3 ∑
k,λ

eλ(k)√
2ωk

(ak,λe−iωkt+ik·x + a†
k,λe+iωkt−ik·x).

Now consider a quantum EM field such that each k, λ-mode is in a coherent state |αk,λ〉. In
other words, the total state is1

|χ〉 = Πk′,λ′ |αk′,λ′〉. (1)

Determine the expectation value 〈χ|A(x, t)|χ〉. This expectation value is nothing but a clas-
sical vector potential of a free field. Confirm this by showing that 〈χ|A(x, t)|χ〉 satisfies the
Maxwell equation of the free-field vector potential, (∇2 − 1

c2
∂2

∂t2 )〈χ|A(x)|χ〉 = 0, and that it satis-
fies the Coulomb gauge condition ∇ · 〈χ|A(x)|χ〉 = 0.

Hint: Recall that the polarization vectors eλ(k) are orthogonal to the direction of propagation
k, i.e., eλ(k) · k = 0. Moreover, recall that a|α〉 = α|α〉 and 〈α|a† = α∗〈α|. (4points)

Remark: This shows that the expectation value of the quantum vector potential with respect
to the coherent field state follows the evolution of the classical counterpart. Does this mean
that field coherent states precisely correspond to classical fields? No, not quite, and that
has to do with the intrinsic uncertainties in the quantum case. For the harmonic oscillator,
the coherent states are minimal uncertainty states. The field coherent states have similar
properties, as we shall see in problem c).

1One may note that we here operate in the Heisenberg picture, where A evolves and the state |χ〉 is fixed.
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c) Analogous to what we did in problem 2 on sheet 9, let us investigate the fluctuations of the
force F =

∫
ρ(x)Ê(x)d3x, on a charge distribution ρ(x), for the electric field operator (and as

in sheet 9, we only consider t = 0)

E(x) =i

√
h̄

ε0L3 ∑
k,λ

√
ωk

2
eλ(k)

(
ak,λ − a†

−k,λ

)
eik·x,

with respect to the coherent field state |χ〉 as in (1).

Show that

∆F := 〈χ| ‖F‖2 |χ〉 − ‖〈χ|F|χ〉‖2 =
h̄

2ε0L3 ∑
k,λ

ωk|ρ̃(k)|2.

with ρ̃(k) =
∫

ρ(x)eik·xd3x.

Hint: Recall that eλ(−k) = eλ(k) and ω−k = ωk. There is a massive cancellation of terms
between 〈χ| ‖F‖2 |χ〉 and ‖〈χ|F|χ〉‖2.

(5points)

Remark: We can conclude that the fluctuations will be non-vanishing in general. Note also
that these fluctuations are independent of the choice of coherent field state, and that they are
the same as those that we obtained for the vacuum state |vac〉 in problem 2 on sheet 9. One
might note that the vacuum state actually is a coherent state.

Something to think about: The field coherent state |χ〉 is determined by the collection of
complex numbers αk,λ. Suppose that we would use the very same numbers to determine a
classical electric field. What would the variance of the force be?2

2 Light-matter interactions: Jaynes-Cummings via the rotating wave approximation

The Jaynes-Cummings model is a particularly simple model of an atom interacting with the
electromagnetic field. This model is particularly suitable for describing a situation where an atom is
inside a cavity, and where the frequency of a mode corresponding to a standing wave in the cavity
matches (precisely or closely) the energy level difference between two energy levels in the atom.
More precisely, we let |0〉 denote the ground state of the atom and |1〉 the selected excited state.
With h̄ωatom = E1 − E0 being the energy gap, we describe the Hamiltonian of these two levels as
Hatom = h̄ ωatom

2 σz, where σz = |1〉〈1| − |0〉〈0|. The Hamiltonian of the select mode of the cavity is
modeled as Hcavity = h̄ωcavitya†a. Finally, we assume that the two-level system and the field mode
interact via the Hamiltonian

HI =h̄g(a† + a)σx,

where g is some constant and σx = |0〉〈1|+ |1〉〈0|.3 Although already a quite simple model, it can
nevertheless be quite messy to analyze this Hamiltonian. Here we are going to use the rotating-
wave approximation in order to find an even simpler model when ωcavity ≈ ωatom, i.e., at (near)
resonance.

2If one consider an alternative where αk,λ are random variables, then one can get a nonzero variance of the force also in
the classical case. This corresponds to models of noisy fields, e.g., due to thermal fluctuations.

3One may certainly wonder where this interaction Hamiltonian comes from. Here we will simply take it for granted, but
one may compare with the final result in section 3.4 in the lecture notes. With gijk being all zero except for k = cavity
and (i, j) = (0, 1) or (i, j) = (1, 0), and g0,1,cavity = g1,0,cavity = h̄g, we get h̄g(a†

k + ak)(b†
1b0 + b†

0b1). One can view
b†

1b0 + b†
0b1 as the second quantized version of σ = |0〉〈1|+ |1〉〈0|.

2



Advanced Quantum Mechanics SS 2023

a) The first step is to transform from the Schrödinger picture to the interaction picture. Let
us for a moment consider a more general Hamiltonian H = H0 + H1, where H0 is time-
independent (and where H1 may or may not be time-dependent). Suppose that |ψ(t)〉 is a
solution to the Schrödinger equation ih̄ d

dt |ψ(t)〉 =
(

H0 + H1
)
|ψ(t)〉, and define the new states

|ψ(t)〉int = eitH0/h̄|ψ(t)〉. Show that

ih̄
d
dt
|ψ(t)〉int = H1,int(t)|ψ(t)〉int, H1,int(t) = eitH0/h̄H1e−itH0/h̄.

(3points)

b) Apply the interaction picture to H0 = Hcavity + Hatom and H1 = HI and show that

HI,int(t) =h̄ge−it(ωcavity+ωatom)aσ− + h̄ge−it(ωcavity−ωatom)aσ+

+ h̄geit(ωcavity−ωatom)a†σ− + h̄geit(ωcavity+ωatom)a†σ+,

where σ+ = |1〉〈0| and σ− = |0〉〈1|.
Hint: recall that eA+B = eAeB if [A, B] = 0. It could be useful to evaluate eitωcavitya†aae−itωcavitya†a

and eitωcavitya†aa†e−itωcavitya†a, as well as eit ωatom
2 σz σxe−it ωatom

2 σz .

(3points)

c) By assuming that ωcavity ≈ ωatom it follows that the terms e±it(ωcavity−ωatom) revolves very slowly
compared to the more fast oscillating terms e±it(ωcavity+ωatom). The rotating wave approxima-
tion is to ignore the fast oscillating terms.4 Apply these approximations, transform back to the
Schrödinger picture, and show that

ih̄
d
dt
|ψ(t)〉 =H′|ψ(t)〉, H′ = h̄ωcavitya†a + h̄

ωatom

2
σz + h̄gaσ+ + h̄ga†σ−.

This Hamiltonian is the Jaynes-Cummings model. (3points)

Remark: To understand the Jaynes-Cummings Hamiltonian H′, one might note that the
term aσ+ excites the two-level system from the ground state |0〉 to the excited state |1〉, and
simultaneously removes one quantum from the harmonic oscillator. The term a†σ− conversely
de-excites the two-level system and adds a quantum to the oscillator. Hence, a single quantum
of energy is moved back and forth between the oscillator and the two-level system.

4One might certainly ask why this is a reasonable approximation. To get a hint, one can rewrite the Schrödinger equation
ih̄ d

dt |ψ(t)〉int = HI,int(t)|ψ(t)〉int as the integral equation |ψ(t)〉int = |ψ(0)〉int +
∫ t

0 HI,int(s)|ψ(s)〉intds. If we for the sake
of simplicity assume ωcavity = ωatom, then we have the two terms

∫ t
0 aσ+|ψ(s)〉intds and

∫ t
0 a†σ−|ψ(s)〉intds (those that

we keep) and we have the two terms
∫ t

0 e−2isωcavity aσ−|ψ(s)〉intds and
∫ t

0 e2isωcavity a†σ+|ψ(s)〉intds. If we now assume that
|ψ(s)〉int varies very slowly compared to the oscillations of e±2isωcavity , then the resulting integral would be very small,
since the oscillations would average to something close to zero. Hence, it could potentially make sense to cancel these
two oscillatory terms. However, to turn this argument into an actual proof, one would need to establish bounds on
how fast |ψ(s)〉int actually changes with s.
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3 Gold star exercise: The Casimir force

In this exercise we explore a particular aspect of light-matter interac-
tions, where the quantum nature of the system really makes itself noticed,
namely the Casimir force. This is closely related to the ground state en-
ergy of the electromagnetic field inside cavities. As you have seen, the
electromagnetic field can be described as a collection of harmonic oscilla-
tors. Usually, the harmonic oscillator has the Hamiltonian h̄ωk(a†

k ak +
1
2 1̂).

However, when we construct the Hamiltonian of the field, we have to sum
over an infinite number of modes. In order to avoid the infinity ∑k

1
2 h̄ωk1̂,

we simply throw these terms away. We do this with the rationale that for
each finite set of modes, this only corresponds to a subtraction of a con-
stant from all energy levels, which has no observable consequences. (See
the discussions in section 3.1 of the lecture notes.)
In view of this one may wonder whether the ‘vacuum energy’ ∑k

1
2 h̄ωk1̂ only is a mathematical odd-

ity without any physical meaning, and thus can be ignored completely. The existence of the Casimir
force suggests that the situation maybe is not quite as simple as that. The point is that the gauge
invariance of physics under the subtraction of a constant energy is only valid if the subtracted en-
ergy indeed truly is a constant. If the ground state energy can change, then observable effects may
emerge. Here we shall investigate this in a simplified one-dimensional model of the electromagnetic
field in a cavity, where we indeed do change the ground state energies of the field by modifying the
cavity.

Consider one-dimensional ‘cavity’ of length L, where we insert
a partition p that divides the cavity into two parts. We thus get
two cavities, one of length r and one of length L− r. Now con-
sider the cavity of length r. Standing waves in that cavity can be
formed at frequencies ωk = kπ

r for k = 1, . . .. On these modes
we have the annihilation operators ak,λ and creation operators
a†

k,λ (where λ is the polarization), and we get the Hamiltonian
H = ∑k,λ h̄ωk(a†

k,λak,λ + 1
2 1̂). For the vacuum state |vac〉, the ex-

pectation value of the energy is
L/2 L/2

r L-r

p0 L

E(r) = 〈vac|H|vac〉 = h̄ ∑k ωk = h̄ ∑k
πk
r . For the combined cavities r and L− r, the vacuum energy

thus is E(r) + E(L− r), which we know is infinite. Recall that absolute energies often do not have
much meaning, but that energy differences do. So, let us compare with the case where we insert the
wall in the middle of the cavity.5 The difference in energy is ∆E(r) = E(r) + E(L− r)− 2E(L/2).
However, we do not really gain much, since we in this case have an expression of the form
∞ + ∞ − 2∞. In order to handle this, we will in the following regularize these infinities by in-
troducing a cutoff-function g(ω) = e−ξω, where the regularized energy function is6

E(r, ξ) = h̄
∞

∑
k=1

ωkg(ωk) = h̄
∞

∑
k=1

πk
r

e−ξ πk
r .

The function E(r, ξ) is finite for all ξ > 0, and E(r, 0) = E(r). The role of the cutoff-function is to
gradually cut off the high frequencies. As ξ goes to zero, the higher up in frequency we move the
cutoff.

a) A good thing about this particular cutoff function is that we can find a closed expression for

5There is nothing special with putting the wall in the middle. Any fixed reference position would do.
6Do you think that we are cheating with this regularization business? Well, welcome to the world of quantum field

theory!
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the regularized energy. Show that

E(r, ξ) =
h̄π

r
e−ξ π

r

(1− e−ξ π
r )2

.

(0points)

b) We are interested in what happens for small values of ξ (i.e., when the cutoff only significantly
affects very high frequencies).

Show that
E(r, ξ) = α

r
ξ2 + β

1
r
+ O(ξ)

and determine the constants α and β. (0points)

c) We define the regularized energy difference

∆E(r, ξ) = E(r, ξ) + E(L− r, ξ)− 2E(L/2, ξ).

We now wish to determine this energy difference as a function of r > 0 in the limit where we
take ξ → 0 (thus take the cutoff to infinity), and where we make the larger cavity infinitely
large L→ ∞ (so that we get the effective force between p and wall 0). Show that

lim
L→∞

lim
ξ→0

∆E(r, ξ) = −γ

r
,

and determine the constant γ > 0. What is thus the effective force between the plate p and the wall 0,
as a function of of the distance r? Is the force attractive or repulsive between the wall and the plate?

(0points)

Remark: With a more accurate model, where one treats the walls and the plate as extended
surfaces, one finds that the force is proportional to r−4. The existence of the Casimir effect has
been confirmed by experiments.
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