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1 The non-relativistic limit of the Klein-Gordon equation

In the lecture we introduce the Klein-Gordon equation for free particles, where we put c = h̄ = 1.
However, in this exercise we temporarily re-dress the KG equation to its full glory as

1
c2 ∂2

t ψ−∇2ψ +
m2c2

h̄2 ψ = 0. (1)

The reason for why we re-introduce c and h̄ is that we want to take the non-relativistic limit, and
for this, it turns out to be easier to interpret things if one keeps h̄ and c.1

In the lecture we first treat ψ as a wave-function, and later as an operator acting on the Hilbert
space of a quantum field. In this exercise we will follow the wave-equation scenario, while in the
next exercise we work with the field version.

As mentioed above, we wish to analyze the behavior of the KG equation in the non-relativistic
limit. To this end, it is useful to rewrite the KG equation, which is second order in time, into two
coupled equations that are first order in time2.

a) For any function3 ψ(t,~r) we define two new functions φ(t,~r) and χ(t,~r) by

φ(t,~r) =
1
2

ψ(t,~r) +
ih̄

2mc2 ∂tψ(t,~r),

χ(t,~r) =
1
2

ψ(t,~r)− ih̄
2mc2 ∂tψ(t,~r).

(2)

Show that if ψ satisfies the KG equation, then φ and χ satisfy

ih̄∂tφ = − h̄2

2m
∇2(φ + χ) + mc2φ, ih̄∂tχ =

h̄2

2m
∇2(φ + χ)−mc2χ. (3)

Hint: At some point it can be useful to invert (2) and express ψ and ∂tψ in terms of φ and
χ. (3points)

Remark: To show that the coupled equations (3) are equivalent to the KG equation (1),
we should strictly speaking also show that if φ and χ satisfy (3), then ψ = φ + χ satisfy (1).
However, we skip this (although nothing would prevent you from showing it anyway :-)

b) Make an ansatz of the form[
φ(t,~r)
χ(t,~r)

]
= e−

i
h̄ (Et−~p·~r)

[
a
b

]
, E ∈ R, a, b ∈ C,

in (3) and show that this leads to an eigenvalue problem of the form M [ a
b ] = E [ a

b ] for a 2× 2 matrix
M. Determine M, and find its eigenvalues, and argue why we should expect to get these eigenvalues.

(4points)
1At least I think its easier to interpret.
2Transformations between equations with higher order derivatives, and coupled equations with lower order derivatives

is a common trick that can be rather useful.
3Well, for any sufficiently smooth function.
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c) Determine the eigenvectors of M, and combine this with b) to write down the corresponding solutions
to (3) as

Ψ±(t,~r) =
[

φ(t,~r)
χ(t,~r)

]
±
=N e−

i
h̄ (±E~pt−~p·~r)

[
mc2 ± E~p

mc2 −±E~p

]
,

where E~p =
√

c2 p2 + m2c4, p = ‖~p‖, with m being the rest mass of the particle. The quantity N
is a normalization factor that we do not bother to determine.

(2points)

d) We can conclude from b) and c) that the free Klein-Gordon equation has two types of plane-
wave solutions. One class where the energy is positive, and one where the energy is negative.
Often these are somewhat vaguely associated to particles and anti-particles. (With a field
theoretic treatment, as in exercise 2, we do not have to be vague any more.) A rather rel-
evant question is how these solutions behave in the low energy limit, i.e., when speeds are

not relativistic. In particular one can note that the two components of the vector
[

mc2±E~p

mc2−±E~p

]
determines the relative weight between φ and χ in the solutions Ψ±.

• What are the weights of the two components φ and χ for the positive and negative plane-waves
Ψ+ and Ψ− in the case when the momentum is zero?

• Expand E~p up to the first order in p2

m2c2 . You will get two energy terms. Interpret these two terms.

• What happens to
[

mc2 ± E~p
mc2 −±E~p

]
for small p2

m2c2 ? What does that mean for the relative weight of φ

and χ in the solutions Ψ±?

(4points)

e) Argue that the evolution of positive energy states in the non-relativistic regime (i.e. for small p2

m2c2 )
is approximately governed by a Schrödinger equation. In other words, show that we in the non-
relativistic limit regain what we are used to in non-relativistic quantum mechanics.

Hint: Consider the results in d) for this regime. Which terms in (3) are going to be large, and
which are going to be small? Be bold and only consider the equation for the dominant term,
and put the small things to zero in that equation. Note that this problem to its very nature is
rather hand-wavy, so we do not expect any particularly rigorous arguments. (3points)
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2 Two conserved quantities of the KG equation that actually are the same

Here we turn to the field-version of the Klein-Gordon equation, where the wave-functions are
re-interpreted as the field operators

φ(x) =
∫ √ 1

2Ep

(
ape−ipµxµ

+ b†
peipµxµ

) d3 p
(2π)3/2

=
∫ √ 1

2Ep

(
ape−i(Ept−p·x) + b†

pei(Ept−p·x)
) d3 p
(2π)3/2

where we, like in the lecture, have put h̄ = 1 and c = 1. Moreover, ap, a†
p and bp, b†

p are bosonic
annihilation and creations operators for particles and anti-particles. In terms of these annihilation
and creation operators, one can define the charge operator

Q = ∑
p

a†
pap −∑

p
b†

pbp.

In the following we will show that this operator is almost, up to one of those annoying infinities,
the same as4

R = i
∫ (

φ†(∂tφ)− (∂tφ
†)φ
)

d3r.

Show that
R =

∫
a†

papd3 p−
∫

bpb†
pd3 p.

Note the ‘wrong’ ordering in bpb†
p.

Hint: For the calculations you can assume that 1
(2π)3

∫
ei(p−p′)·xd3x = δp,p′ .

(4points)

Remark: By the canonical commutation relations it follows that bpb†
p = b†

pbp + 1̂. In other words,
R is equal to Q, up to a term that diverges to infinity. 5

4In the gold star exercise we suse Noether’s theorem in order to show how this type of conserved quantity comes about.
5Sometimes people use the notion of ‘normal ordering’ as a tool to deal with these infinities, often denoted : Q :, where

Q is some product of annihilation and creation operators. The normal ordering : Q : then means that we move all
creation operators to the left of all annihilation operators. For example, : a1a†

2a†
1 := a†

2a†
1a1. In this notation, we would

thus have : R := Q. Although it gives a compact way of dealing with this type of infinities, it does not really explain
anything.
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3 Gold star exercise: R via Noether’s theorem

In exercise 2, the quantity R kind of just fell from the sky. Here we shall
see how the non-quantized counterpart (for complex-valued fields rather
the operator valued ones)

R =i
∫

(ψ∗(∂tψ)− (∂tψ
∗)ψ) d3r.

comes about via Noether’s theorem. By Noether’s theorem we can asso-
ciate conserved quantities to symmetries of the Lagrangian of the system.

You will most likely have encountered this in classical mechanics for systems with finite degrees
of freedom, but it also works for fields. We will not derive Noether’s theorem for fields here,
but simply just apply it in order to see that R actually emerges as a consequence of a very basic
symmetry of the KG field. One version of Noether’s theorem goes as follows: Suppose that a
Lagrangian density L is invariant under the mapping ψl 7→ ψ

(s)
l , where s is some real parameter,

and ψ
(0)
l = ψl , then

F =
∫

∂L
∂(∂tψl)

dψ
(s)
l

ds

∣∣∣∣
s=0

d3x

is a conserved quantity (where we sum over l).
As you may recall from sheet 11, the Lagrangian density of the KG field is

L =
1
2
(∂αψ∗)(∂αψ)− 1

2
m2ψ∗ψ ≡ 1

2
(∂tψ

∗)(∂tψ)−
1
2
(∇ψ∗) · (∇ψ)− 1

2
m2ψ∗ψ, (4)

where we regard ψ and ψ∗ as two independent fields.

a) Show that (4) is invariant under the mapping

(ψ, ψ∗) 7→ (ψ(s), ψ∗(s)) = (eisψ, e−isψ∗).

(0points)

b) What is the corresponding conserved quantity?

Hint: Since the ψ and ψ∗ are complex-valued, rather than operator-valued, we have ψ∗(∂tψ) =

(∂tψ)ψ∗, i.e„ the ordering does not matter. Moreover, multiplying a conserved quantity with
a non-zero constant yields an equivalent conserved quantity.

(0points)

4


	The non-relativistic limit of the Klein-Gordon equation
	Two conserved quantities of the KG equation that actually are the same
	Gold star exercise: R via Noether's theorem

