# Advanced Quantum Mechanics <br> David Gross and Johan Åberg <br> Institut für Theoretische Physik, Universität zu Köln <br> SS 2023 <br> <br> Exercise sheet 2 Due: Sunday April 16 at 24:00 

 <br> <br> Exercise sheet 2 Due: Sunday April 16 at 24:00}

## 1 Angular momentum, singlet and triplet states

Angular momentum is in classical mechanics described as a vector $\vec{j}=\left(j_{x}, j_{y}, j_{z}\right)$ pointing in the direction of the rotation axis. In quantum mechanics we do instead describe angular momentum via a vector of operators $\vec{J}=\left(J_{x}, J_{y}, J_{z}\right)$. For spin-half systems these angular momentum operators take the form

$$
J_{x}=\frac{1}{2} \hbar \sigma_{x}, \quad J_{y}=\frac{1}{2} \hbar \sigma_{y}, \quad J_{z}=\frac{1}{2} \hbar \sigma_{z} .
$$

The Pauli operators $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are often expressed in terms of their matrix representations (the Pauli matrices) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ with respect to the eigenbasis basis $\{|\uparrow\rangle,|\downarrow\rangle\}$ of $\sigma_{z}$, where the two orthonormal eigenvectors $|\uparrow\rangle$ and $|\downarrow\rangle$ correspond to the eigenvalues +1 and -1 , respectively.
a) Show that the Pauli operators can be written as

$$
\sigma_{x}=|\uparrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\uparrow|, \quad \sigma_{y}=-i|\uparrow\rangle\langle\downarrow|+i|\downarrow\rangle\langle\uparrow|, \quad \sigma_{z}=|\uparrow\rangle\langle\uparrow|-|\downarrow\rangle\langle\downarrow| .
$$

(2 points)
b) Suppose now that we have two spin-half systems with Pauli-operators $\sigma_{1 x}, \sigma_{1 y}, \sigma_{1 z}$ and $\sigma_{2 x}, \sigma_{2 y}$, $\sigma_{2 z}$, respectively. Show that

$$
\sigma_{1 x} \otimes \sigma_{2 x}+\sigma_{1 y} \otimes \sigma_{2 y}=2|\uparrow \downarrow\rangle\langle\downarrow \uparrow|+2|\downarrow \uparrow\rangle\langle\uparrow \downarrow| .
$$

Remark: We have here used a compact notation where, e.g., $|\uparrow \uparrow\rangle$ is the same as $|\uparrow\rangle_{1}|\uparrow\rangle_{2}$, which also can be written $|\uparrow\rangle_{1} \otimes|\uparrow\rangle_{2}$. Consequently, $|\uparrow \downarrow\rangle\langle\downarrow \uparrow|$ can be rewritten as $|\uparrow\rangle_{1}\langle\downarrow| \otimes|\downarrow\rangle_{2}\langle\uparrow|$.
c) For two angular momentum operators $\vec{J}_{1}=\left(J_{1 x}, J_{1 y}, J_{1 z}\right)$ and $\vec{J}_{2}=\left(J_{2 x}, J_{2 y}, J_{2 z}\right)$, the total angular momentum operator is given by $\vec{J}=\vec{J}_{1} \otimes \hat{1}_{2}+\hat{1}_{1} \otimes \vec{J}_{2}$. Show that for two spin-half systems it is the case that

$$
\vec{J}^{2}=\frac{3}{2} \hbar^{2} \hat{1}_{1} \otimes \hat{1}_{2}+\frac{1}{2} \hbar^{2} \sigma_{1 z} \otimes \sigma_{2 z}+\hbar^{2}(|\uparrow \downarrow\rangle\langle\downarrow \uparrow|+|\downarrow \uparrow\rangle\langle\uparrow \downarrow|) .
$$

d) Show that the "singlet state"

$$
\left|\psi_{0,0}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle),
$$

and the "triplet states"

$$
\left|\psi_{1,1}\right\rangle=|\uparrow \uparrow\rangle, \quad\left|\psi_{1,0}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle), \quad\left|\psi_{1,-1}\right\rangle=|\downarrow \downarrow\rangle,
$$

are simultaneous eigenvectors of the two operators $\vec{J}^{2}$ and $J_{z}=J_{1 z} \otimes \hat{1}_{2}+\hat{1}_{1} \otimes J_{2 z}$, and determine the corresponding eigenvalues.

## 2 Density operators and the Bloch representation

Density operators generalize the notion of quantum states, such that instead of being represented by normalized vectors in a Hilbert space, they correspond to Hermitian positive semidefinite operators with trace 1 on the Hilbert space. The familiar case when the state can be represented by a vector $|\psi\rangle$, is in the language of density operators written as $\rho=|\psi\rangle\langle\psi|$, and such states are referred to as "pure", while all other states are referred to as "mixed".
a) For the Pauli operators, defined in exercise 1 , show that

- $\operatorname{Tr}\left(\sigma_{j}\right)=0, j \in\{x, y, z\}$,
- $\operatorname{Tr}\left(\sigma_{j} \sigma_{k}\right)=2 \delta_{j, k}, \quad j, k \in\{x, y, z\}$.


## (4 points)

Remark: The set of linear operators on a finite-dimensional Hilbert space does itself form a Hilbert space (often called the Hilbert-Schmidt space) if one equips it with the inner product $(A, B)=\operatorname{Tr}\left(A^{\dagger} B\right)$. The set of operators $\left\{\hat{1}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$ forms an orthogonal (but not normalized) basis of the Hilbert-Schmidt space on a two-dimensional Hilbert space. Via this observation one can understand the Bloch-representation, that is the focus of the next exercise, simply as a basis expansion of vectors.
b) The state of a single spin-half system (a "qubit") can be described via the Bloch-representation

$$
\rho=\frac{1}{2}(\hat{1}+\vec{n} \cdot \vec{\sigma}),
$$

where $\vec{n} \in \mathbb{R}^{3}$ and $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$. Show the following:

- The Bloch-vector is given by $\vec{n}=\operatorname{Tr}(\vec{\sigma} \rho)$
- $\operatorname{Tr}\left(\rho^{2}\right)=\frac{1}{2}\left(1+|\vec{n}|^{2}\right)$
- $\|\vec{n}\| \leq 1$ for all quantum states, and $\|\vec{n}\|=1$ for pure states. Hence, the Bloch vectors lie inside a sphere of radius 1 , where the pure states lie on the surface.
- Suppose that $\rho_{1}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|$ and $\rho_{2}=\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|$ for normalized vectors $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$, where these are orthogonal $\left\langle\psi_{1} \mid \psi_{2}\right\rangle=0$. What is the relation between the corresponding Blochvectors $\vec{n}_{1}$ and $\vec{n}_{2}$ ?
Hint: Use the fact that $\operatorname{Tr}\left(\rho^{2}\right) \leq 1$ for all density operators, with $\operatorname{Tr}\left(\rho^{2}\right)=1$ if and only if $\rho$ is pure.

