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1 Gates and circuits

a) The NOT-gate, or X-gate1, is a single-qubit gate that acts like X|0〉 = |1〉 and X|1〉 = |0〉. With
respect to the computational basis |0〉, |1〉, it has the matrix representation

[
0 1
1 0

]
. We can also

write it directly in terms of the basis as

X = |1〉〈0|+ |0〉〈1|. (1)

Similarly, the Z-gate is a single-qubit gate that acts like Z|x〉 = (−1)x|x〉, and the Y-gate
acts like Y|0〉 = i|1〉 and Y|1〉 = −i|0〉. We also have the Hadamard gate that acts like
H|x〉 = 1√

2
(|0〉+ (−1)x|1〉). Analogous to (1), express Z, Y and H in terms of the computational

basis elements.

Hint: Resolutions of identity can often be useful.

(3points)

b) Show the following equivalence

H HX Z=

(1point)

c) Recall that the CNOT-gate swaps the state of a target-bit depending on the state of a control-
bit. For two bits, this gate thus comes in two versions, depending on which bit is the control,
and which is the target. With respect to the computational basis {|00〉, |01〉, |10〉, |11〉} the two
corresponding gates are (where we use the ordering |x1x2〉)

CNOT(12)|00〉 = |00〉, CNOT(12)|01〉 = |01〉, CNOT(12)|10〉 = |11〉, CNOT(12)|11〉 = |10〉,
CNOT(21)|00〉 = |00〉, CNOT(21)|01〉 = |11〉, CNOT(21)|10〉 = |10〉, CNOT(21)|11〉 = |01〉,

1

2

CNOT CNOT(12) (21)

If one concatenates these two types of CNOT-gates such that CNOT(21)CNOT(12)CNOT(21),
one obtains a gate referred to as the SWAP-gate.

1

2

=
SWAP

1The NOT-gate is often written as the X-gate in the quantum-case, since it corresponds to the Pauli-x operator, analogous
to how the Z-gate and Y-gate correspond to the Pauli-z and -y operators.

1



Advanced Quantum Mechanics SS 2023

Show that the SWAP-gate has the property that

SWAP|α〉|β〉 = |β〉|α〉,

for any input state |α〉 on the first qubit and any input state |β〉 on the second qubit. In other words,
the SWAP-gate swaps the states of qubits 1 and 2.

(3points)

d) Show that
CNOT(12) = |0〉〈0| ⊗ 1̂2 + |1〉〈1| ⊗ X.

(1point)

e) Find a two-qubit Hamiltonian that implements the CNOT(12)-gate. It is fine if the implementation
agrees with the CNOT(12)-gate only up to a global phase-factor.

Hint: There was a reason for why we did d).

(2points)

f) In analogy with the CNOT-gate, one can consider all kinds of controlled gates on the form
G(12) = |0〉〈0| ⊗ 1̂2 + |1〉〈1| ⊗U, some single-qubit unitary operator U on the second qubit.
We might for example want to implement control-Z-gate in this manner, with U = Z. Suppose
that you have access to CNOT(12)-gates and Hadamard gates. How could you use these in order to
implement a control-Z-gate? Draw the circuit that would implement the control-Z-gate.

Hint: Again, there was a reason for why we did d).

(2points)

2 Showing that U f is unitary

For the analysis of Grover’s algorithm, we did in the lecture model the computational problem
via a function f : {0, 1}×n → {0, 1}, which outputs 1 if the n-bit string x is a solution to the
problem, while it otherwise outputs 0. To turn this into a quantum gate, we consider a n-qubit
system with with computational basis {|x〉}x∈{0,1}×n .2 Moreover, we introduce an extra qubit with
basis {|y〉}y=0,1, and define the operator U f by its action on all the basis elements |x〉|y〉 as

U f |x, y〉 = |x, f (x)⊕ y〉, x ∈ {0, 1}×n, y ∈ {0, 1}. (2)

Here ⊕ is addition modulo 2.3 Show that U f is a unitary operator.
(4points)

3 From U f to Vf

In the lecture we made a jump from U f in (2) to the operator Vf such that

Vf |x〉 = (−1) f (x)|x〉, x ∈ {0, 1}×n.

2When one talks about a ‘computational basis’ it is implied that we consider a product basis |x〉 = |x1〉 ⊗ · · · ⊗ |xn〉 with
a ‘local’ basis on each qubit. This is good to keep in mind, since there are many other choices of basis that are not of
this product form.

3The truth-table of a⊕ b for two single bits a and b is

 a b a⊕b
0 0 0
0 1 1
1 0 1
1 1 0

. Hence, this is equivalent to XOR(a, b).
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(Hence, as opposed to U f in (2), this does not require any ‘extra’ qubit.) In the lecture we claimed
that if we have access to a device that implements U f , then we can also implement Vf . In this
exercise we show how this can be done. Verify the equivalence depicted in the circuit diagrams below.
(Recall that circuit diagrams are read from left to right.) In other words, if we first put the extra
qubit (corresponding to y in (2)) into the state H|1〉, before we apply U f , then the effect on |x〉 is as
if we applied U f and did do nothing on H|1〉.4

x
Uf

H1

x Vf

H1
=

Hint: Might ease things if one treats different cases separately.
(4points)

4 Gold star exercise: Alice and Bob fall out over the CNOT-gate

This exercise gives absolutely no points, but you can do it anyway if you want to.

1

2

1

2

Students Alice and Bob5 have registered a startup “Cologne Quantum Supercomputing” and built
a two-qubit quantum computer in their WG.6 They believe that they have implemented the CNOT-
gate, but decided to test it experimentally. The problem is that they cannot agree on the results, and
they are getting increasingly angry at each other.

Alice and Bob each performs a series of experiments. Alice uses the computational basis |0A0A〉,
|0A1A〉, |1A0A〉, |1A1A〉 and finds that G operates as

G|0A
1 0A

2 〉 = |0A
1 0A

2 〉, G|0A
1 1A

2 〉 = |0A
1 1A

2 〉, G|1A
1 0A

2 〉 = |1A
1 1A

2 〉, G|1A
1 1A

2 〉 = |1A
1 0A

2 〉.

In other words, G acts precisely as one would expect from the CNOT(12)-gate. Bob happens to
choose a different computational basis |0B

1 0B
2 〉, |0B

1 1B
2 〉, |1B

1 0B
2 〉, |1B

1 1B
2 〉, which is related to Alice’s

basis as |xB
1 xB

2 〉 = H ⊗ H|xA
1 xA

2 〉. The problem is that when Bob performs his experiment, he finds
that

G|0B
1 0B

2 〉 = |0B
1 0B

2 〉, G|0B
1 1B

2 〉 = |1B
1 1B

2 〉, G|1B
1 0B

2 〉 = |1B
1 0B

2 〉, G|1B
1 1B

2 〉 = |0B
1 1B

2 〉,
4This is maybe a bit counter-intuitive. The extra qubit is necessary in order implement Vf on |x〉, but the state of the

extra-qubit itself is left unaffected at the end of the process. Because of this, when we analyze Grover’s algorithm, it
is enough to consider Vf without having to bother about the extra qubit.

5You may have known them under the names Anna and Bernd.
6The equipment occupies 93% of the volume of their flat. They only have space to sleep in shifts, and they can only

barely squeeze themselves between the kitchen and the bathroom. There is constant noise from the cooling equipment,
and the floor seems to bulge suspiciously under the weight, but who cares about such minor inconveniences!? They
intend to sell access to their quantum computer via a cloud service and become insanely rich!!!
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which is precisely what you would expect from a CNOT(21)-gate. When they repeat their experi-
ments, they find the same results over and over again, and each is getting more and more convinced
that the other is completely incompetent and a total moron. Hopefully, you can help to resolve their
issue.

a) Let us start with some general observations. The classical CNOT(12)-gate flips the second bit
x2 only if the first bit is x1 = 1. Moreover, it leaves the first bit unaffected. The analogous
statements are, by construction, true for the corresponding quantum gate, if it is applied
to the computational basis states. What happens if we apply the quantum CNOT(12)-gate
to more general states, e.g., to product states |ψ1〉|ψ2〉? (There is no superscript A or B on
purpose, in order to leave it open.) Let us simply try! Apply CNOT(12) on the product state

1√
2
(|01〉+ |11〉)|02〉. Is the output a product state? Is the state of qubit 1 unaffected?

(0points)

b) Show that
H⊗2CNOT(12)H⊗2 = CNOT(21).

(0points)

c) Suppose that Alice defines the unitary operator CNOT(12),A via CNOT(12),A|xA
1 xA

2 〉 = |yA
1 yA

2 〉
with (y1, y2) = CNOT(12)(x1, x2) for her basis {|xA

1 xA
2 〉}x1,x2 . Suppose moreover that Bob

defines the unitary operator CNOT(21),B via CNOT(21),B|xB
1 xB

2 〉 = |yB
1 yB

2 〉 with (y1, y2) =

CNOT(12)(x1, x2) for his basis {|xB
1 xB

2 〉}x1,x2 . What is the relation between the operators CNOT(12),A

and CNOT(21),B? Do you have any suggestion for how Alice and Bob’s friendship could be saved?

(0points)

Moral of this story: The quantum counterparts of classical gates are not as innocent as they might
seem at first sight; they might look quite different in another computational basis. Moreover, the
quantum counterpart to a classical gate is always defined with respect to a choice of computational
basis, so the actual operator depends on which basis that you happen to choose.
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