Formelsammlung

1. Die Fouriertransform und ihr Inverses, für Funktionen $f: \mathbb{R} \to \mathbb{C}$ lauten

$$\mathcal{F}[\psi](k) = \tilde{\psi}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} \psi(x) \, \mathrm{d}x,$$
$$\mathcal{F}^{-1}[\tilde{\psi}](x) = \psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} \tilde{\psi}(k) \, \mathrm{d}k.$$

Die entsprechende Vollständigkeitsrelation lautet

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i(k-k_0)x} dx = \delta(k-k_0).$$

2. Für die Fouriertransformation einer Ableitung gilt

$$\mathcal{F}\left[\frac{\partial}{\partial x}f(x)\right](k) = (ik\tilde{f})(k).$$

3. Euleridentität

$$e^{ix} = \cos(x) + i\sin(x).$$

4. Inverse einer 2×2 -Matrix **T**

$$\mathbf{T}^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\det \mathbf{T}} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

1 Eine normale Matrix

Geben ist ein Einheitsvektor \boldsymbol{u} in \mathbb{R}^n . Es gilt also $\boldsymbol{u}^t\boldsymbol{u}=1$. Damit können wir die symmetrische Matrix $\mathbf{H}=\mathbb{I}-2\boldsymbol{u}\boldsymbol{u}^t$ bilden.

- a) Zeigen Sie, dass $\mathbf{H}^2 = \mathbb{I}$.
- b) Ein Eigenvektor von \mathbf{H} ist u. Finden Sie den dazugehörigen Eigenwert.
- c) Wir nehmen an, dass v ein beliebiger von Null verschiedener Vektor ist, der orthogonal zu u steht. Zeigen Sie, dass v ein Eigenvektor von \mathbf{H} ist, und finden Sie den entsprechenden Eigenwert λ .
- d) Was ist die Vielfachheit des Eigenwertes λ ? (Hinweis: in der letzten Teilaufgabe war \boldsymbol{v} ein beliebiger zu \boldsymbol{u} orthogonaler Vektor).
- e) Bestimmen Sie die Spur von H.

2 Vektorraum aus Polynomen

Es sein $P_2(\mathbb{R})$ die Menge aller reellen Polynome p mit p'''=0. Für $p,q\in P_2$ ist die Addition durch

$$(p+q)(x) = p(x) + q(x)$$

und Multiplikation mit dem Skalar $\lambda \in \mathbb{R}$ durch

$$(\lambda \cdot p)(x) = \lambda p(x)$$

definiert.

- a) Zeigen Sie, dass $P_2(\mathbb{R})$ Untervektorraum des Raumes aller Funktionen $\mathbb{R} \to \mathbb{R}$ bildet.
- b) Geben Sie eine möglichst einfache Basis für $P_2(\mathbb{R})$ an.
- c) Zeigen Sie, dass die Polynome $p_1(x) = x^2 + x + 2$, $p_2(x) = 3x^2 + 2x + 6$ linear unabhängig sind.

3 Lineare Abbildung

Wir befinden uns im \mathbb{R}^2 . Gegeben ist die Abbildung

$$\mathbf{F}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 \end{pmatrix}.$$

- a) Sei $\mathcal{B}_1 = \{e_1, e_2\}$ die Standardbasis im \mathbb{R}^2 . Geben Sie die Matrixdarstellung $\mathbf{F}_{\mathcal{B}_1}$ von \mathbf{F} in der Standardbasis an.
- b) Sei nun $\mathcal{B}_2 = \{f_1, f_2\} = \{-e_1 e_2, e_1 e_2\}$ eine weitere Basis. Finden Sie die Matrix $\mathbf{T}_{\mathcal{B}_1}^{\mathcal{B}_2}$, die Vektoren in der Standardbasis in die Darstellung bezüglich \mathcal{B}_2 abbildet. Finden Sie ebenfalls die Umkehrmatrix $\mathbf{T}_{\mathcal{B}_2}^{\mathcal{B}_1}$.
- c) Geben Sie die Matrixdarstellung von ${\bf F}$ bezüglich der Basis ${\cal B}_2$ an.
- d) Berechnen Sie den Kern der Darstellung $\mathbf{F}_{\mathcal{B}_1}$. Welche Dimension hat das Bild?

4 Determinante

- a) Zeigen Sie, dass die Determinante $\det(\mathbf{M})$ einer Matrix \mathbf{M} unter Wechsel der Basis invariant ist.
- b) Nehmen Sie an, dass det M diagonalisierbar ist. Zeigen Sie, dass die Determinante das Produkt der Eigenwerte ist. (Das gilt auch für nicht diagonalisierbare Matrizen. Das muss aber nicht bewiesen werden).

Gegeben ist die Matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.$$

- a) Bestimmen Sie das Volumen und die Orientierung des Parallelograms, das durch die Spalten von A aufgespannt wird.
- b) Stellen Sie das charakteristische Polynom der Matrix auf und bestimmen Sie die Eigenwerte sowie die Eigenvektoren.

5 Matrixexponential

Sei wieder

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.$$

a) Berechnen Sie das Matrixexponential von A.

6 Gaußverfahren

Gegeben ist eine Matrix

$$\mathbf{M} = \begin{pmatrix} 6 & 18 & 3 \\ 2 & 12 & 1 \\ 4 & 15 & 3 \end{pmatrix}.$$

a) Bringen Sie die Matrix in obere Dreiecksgestalt. Bestimmen Sie daraus die Determinante $\det(\mathbf{M})$.

7 Fouriertransform

a) Bilden Side die Fouriertransformation von

$$f(x) = \cos(x).$$

b) Bestimmen Sie durch Fouriertransformation die Funktion g(x), die

$$g''(x) + 2g'(x) + g(x) = \cos(x)$$

löst.

Hinweis: Formelsammlung.