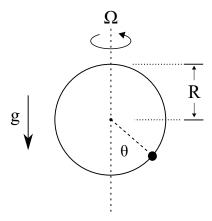
CLASSICAL MECHANICS

David Gross, David Wierichs, Markus Heinrich, Johan Åberg

Exercise sheet 10 Due: Thursday January 21 at 24:00

1 Bead on a rotating hoop



This exercise illustrates that the Lagrangian method also works for systems where the constraints depend on time. We consider a bead of mass m, which slides without friction on a hoop of radius R that rotates around its vertical axis with a constant angular speed Ω . Hence, the bead is constrained to only move on the hoop, but the hoop does in turn rotate. The bead is affected by gravity.

- a) Derive the Lagrangian expressed in terms of the angle θ that the bead makes with the vertical downwards direction. (3 points)
- **b)** *Find the equation of motion of the bead.*

(2 points)

2 Double pendulum without gravity

Consider a double-pendulum where the two masses move in a plane. Mass m_1 is attached to a fixed point via a massless rod of length ℓ_1 . A second mass m_2 is in turn attached by a massless rod of length ℓ_2 to mass m_1 . In this problem we assume that the masses are *not* affected by gravity.

a) Show that the Lagrangian with respect to the angles θ_1 and θ_2 as in the figure can be written as

$$L = A\dot{\theta}_1^2 + B\dot{\theta}_2^2 + C\dot{\theta}_1\dot{\theta}_2\cos(\theta_2 - \theta_1),$$

and determine the constants A, B and C. Note that the since there is no gravity, there is no potential energy. (3 points)

b) Recall from the lecture that a transformation $\vec{\Phi}^{(s)} : \mathbb{R}^n \to \mathbb{R}^n$ with $\vec{\Phi}^{(0)}(\vec{q}) = \vec{q}$ is a symmetry transformation of a Lagrangian $L(\vec{q}, \dot{\vec{q}})$ if

$$\frac{d}{ds}\Big|_{s=0}L\Big(\vec{\Phi}^{(s)}\big(\vec{q}(t)\big),\frac{d}{dt}\vec{\Phi}^{(s)}\big(\vec{q}(t)\big)\Big)=0.$$

Show that the transformation

$$(heta_1, heta_2)\mapsto ec{\Phi}^{(s)}(heta_1, heta_2)=(heta_1+s, heta_2+s).$$

is a symmetry of the Lagrangian in a).

c) Derive the conserved quantity from Noether's theorem, with respect to the transformations $\vec{\Phi}^{(s)}$ in b).

(3 points)

3 Generalized Noether

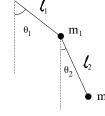
The Noether-theorem that we employed in the previous exercise can be generalized. Recall from the lecture that a family of trajectories $\vec{q}^{(s)}(t)$ with $\vec{q}^{(0)}(t) = \vec{q}(t)$ satisfies the conditions for the generalized Noether theorem if there exists a function $\vec{\Delta}$ and a function f such that

$$\frac{d}{ds}\Big|_{s=0}\vec{q}^{(s)}(t) = \vec{\Delta}(\vec{q}(t), \dot{\vec{q}}(t), t)$$

$$\frac{d}{ds}\Big|_{s=0}L(\vec{q}^{(s)}(t), \dot{\vec{q}}^{(s)}(t), t) = \frac{d}{dt}f(\vec{q}(t), \dot{\vec{q}}(t), t).$$
(1)

Suppose that we have a particle of mass *m* that lives on a line (\mathbb{R}) with coordinate *q*. This particle is affected by a time-dependent potential V(q, t) = g(t)q, for some (nice) function *g*.

- a) Determine the Lagrangian for the particle with respect to the coordinate q. (1 point)
- **b)** Consider the family of trajectories $q^{(s)}(t) = q(t) + s$. Find functions Δ and f that satisfy the conditions of the generalized Noether-theorem in (1). (3 points)
- c) Determine the conserved quantity corresponding to the transformation in b). (2 points)
- **d)** As an alternative to the generalized Noether-theorem, one can show that the quantity in c) is conserved by directly using the equation of motion of the particle. *Do that derivation.* (1 point)



(2 points)