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1 Properties of the angular momentum operators

A triple of operators (J1,J2,J3) can be interpreted as representing the angular momentum of a
physical system, if they satisfy the angular momentum commutation relations

[J1, 2] = ih]3, and cyclic permutations, (1)

or more compactly

Ukt ]l] =ih Zen,k,l]nr

where € is the Levi-Civita symbol. In order to work with angular momentum, it is useful to introduce
some additional operators. In particular the absolute value square of the angular momentum

=T+
which in some sense corresponds to magnitude. We also have the ladder operators’
J+ =N £i].

a) Show that
[J?, ]3] = 0. (2)
(2 points)

Remark: Recall that Hermitian operators that commute share a common eigenbasis. This
eigenbasis is very convenient for analysing angular momentum. Each such joint egienstate is
characterised by two quantum numbers; the eigenvalue of J? and the eigenvalue of J3. We will
see more of this in exercise 2.

b) Show that
3, J+] = £h]+.

(2 points)

¢) Show that
J-T+ =T*—J3 -5

(2 points)

*One may note the analogy with the ladder operators a = i\[ (X +iP)and at = i\[ (X —iP), for the Harmonic oscillator.

)
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2 Spin 1

As mentioned above, the commutation relation (2) means that J*> and J3 share a common eigen-
basis, which we denote by |, m). Here, j can either be an integer or a half-odd-integer (i.e. 0,1,2, ...
orl1/2,3/2,5/2,...) and

Jlj,m) =j(j + 1)i2[j,m),
]3’]’m> :mh‘]’m>’ m:_]l_]+1fr]_1/]

Hence, for each fixed j there are 2j 4- 1 possible values of m. By the ladder operators |+ we can step
between the values of the quantum number m, in the sense that

Jioljom) = /G —m) G+ m+)jm+ 1), J-|j,m) =/ G+ m)(—m+ 1), m 1),

Here “spin 1”7 simply means j = 1, in which case the corresponding set of joint eigenvectors
are |1,—1),/1,0),|1,1) that span a 3-dimensional space. Here we wish to represent the operators
12, 11, J2, J3, ]+ as matrices in this basis.

a) First of all, determine the matrix

LUPLY (LR (L1P1,-1)
M(]?) = | (LOIPL1) (L0100 (1,021, 1)
(L-1%[1,1) (1, -1[%1,0) (1,-1[]1,-1)
and analogously for M(]3).
(2 points)
b) Determine M(]+).
Hint: Think about which matrix elements have to be zero.
(2 points)
) Finally determine M(J,) and M(]).

Hint: There was a reason for why we determined M(]+) before we determine M(J;) and
M(J2).

(2 points)

d) What, wait?! In the lecture we derived the generators for the spin-1 case and got*

0 0 O 0 01 0 -1 0
lh=i|0 0 =1, ILhb=ih |0 0 0|, Iz=ik|1l 0 O
01 0 -1 0 0 0 0 0

This does not coincide with the matrices M(]J1), M(J2), M(J3) that we get above. Is something
wrong? No, nothing is wrong, we have just used two different bases for the representing
J1, J2, J3 on the spin-1 subspace, where we in the lecture used a Cartesian coordinate system in

00 0 001 0-10
>Well, strictly speaking, we got I = {8 0 Bl ] , = { 01 8 8} L3 = [ %) 8 8} . However, this is a more trivial difference in
1 -

terms of how choose generators, where Uy, w,w; () = e~ X (Wihtwaltwsh)/h — eX(wihrwhtwsh) The choice Iy, I, I3
corresponds to the preference in quantum mechanics for Hermitian generators (and 7 relates to the wish to keep track
of units).
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R3. However, the eigenbasis |1,1),|1,0), |1, —1) corresponds to a complex unitary transforma-
tion of those Cartesian coordinates.’ Define the new ON-basis

1

V2

i

V2

i

V2

1
11,-1>, |e2>=

"

leg >= ——=11,1) 1,1 >+—1,-1), les) =11,0)

Show that
(e1sler) (exlfsle2) (enl/sles)
(2| sler) (e2|Jsle2) (ealJsles) | = Ia. 3)
(es|Jzler) (es|Jsle2) (eslJales)

Hint: It can be a good idea to express J3 in terms of some outer product of bras and kets.

Remark: One can analogously obtain I; as the matrix representation of J; in the {|ex)}?_;
basis, as well as I, as the matrix representation of J,. However, it is tiresome enough to show

(3)-

(2 points)

3 Orbital angular momentum

Recall that for a classical particle with position x € R®> and momentum p, the angular momentum
(with respect to the origin) is given by x x p. With this classical expression in mind, we could
attempt to define the quantum orbital angular momentum operators L = (Ly,Ly, L3) as

L=Xx P, orequivalently L;= Ee]-,m,nXmPn,
m,n

where X = (X3, Xy, X3) and P = (Py, P, P3) are the position and momentum operators, respectively,
with respect to a Cartesian coordinate system.

a)

b)

As mentioned in exercise 1, it is legitimate to regard L = (Lj, Ly, L3) as angular momentum
operators, if they satisfy the angular momentum commutation relations. Show that the L =
(L, Ly, L3) satisfy the angular momentum commutation relations (1).

Hint: One can directly evaluate [L1, Ly, [L2, L3] and [L3, L1], with L; = XoP3 — X3P, Ly =
X3P — X1P3, Ly = X1P» — XoP;, or one can do all of them in one single go by using the
formulations in terms of the Levi-Civita symbol. In case you go for the Levi-Civita symbols,
then you can make use of the relation ) ; €;,;€ist = dusdi — 6utdys.

(2 points)

From the lecture we know that the angular momentum operators are the generators of ro-
tations. Nevertheless, in the following we explicitly confirm this for the orbital angular mo-
mentum. For the sake of simplicity* we focus on rotations around the 3-axis (the z-axis). The
component L3, represented as a differential operator in Cartesian coordinates, is

. d ) d
(xlLalp) = (M| (Xa P2 = XoP1) ) = —ifoer g~ (x) + ifxa g (x).

Show that for spherical coordinates, L3 takes the form

. 0
0,0, 7ILaly) = ~inzy.

3We can of course not do such a transformation in R3. Here, we make use of the fact that we operate in C3.
4The components L; and L, get a bit tiresome in the standard spherical coordinate system, and the calculations in c)
would get even more horrible.
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Recall that for the spherical coordinates we have

X1 rsin @ cos ¢
Xo| = |rsinfsing | .

X3 rcosf

(2 points)

¢) Suppose that we have a wave-function (6, ¢, r) in terms of the spherical coordinate system.
A rotation R3(x) by an angle x about the 3-axis corresponds to [R3(x)¥](6,¢,7) = ¢(6,¢ —
X, 7). The generator Ls corresponds to the unitary operation e~*'3/" which in the spherical

coordinate system takes the shape (6, ¢, r|e~*Ls/f|p) = (677(% ¥) (0, ¢, 7). Show that

x2
(e X y)(6,9,7) = (0,9 — x, 7).
In other words, you should confirm that the L3 component of the orbital angular momentum
indeed is the generator of rotations around the 3-axis.
Hint: As for so many other occasions, we have a friend named Taylor.

(2 points)
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