Quantum Mechanics

David Gross, Johan Åberg

Institut für Theoretische Physik, Universität zu Köln

$$
WS\,24/25
$$

Sheet 11 Saturday December 21 at 24:00

1 *p***-orbitals**

In this exercise we investigate the spherical harmonics corresponding to the angular momentum quantum number $l = 1$. However, let us first briefly consider the case $l = 0$. Since $-l \le m \le l$, the only possibility is $m = 0$, and the corresponding spherical harmonics is $Y_{l=0}^{m=0}(\theta, \phi) = (4\pi)^{-1/2}$. One can think of Y_0^0 as a uniform sphere, and is commonly referred to as an *s*-orbital. The next possibility is $l = 1$, for which $m = -1, 0, 1$, and which correspond to the *p*-orbitals.

a) In spherical coordinates the orbital angular momentum operators take the form

$$
\langle \theta, \phi | L_x | \psi \rangle = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \frac{\cos \phi}{\tan \theta} \frac{\partial}{\partial \phi} \right) \psi(\theta, \phi),
$$

$$
\langle \theta, \phi | L_y | \psi \rangle = i\hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \frac{\sin \phi}{\tan \theta} \frac{\partial}{\partial \phi} \right) \psi(\theta, \phi),
$$

$$
\langle \theta, \phi | L_z | \psi \rangle = -i\hbar \frac{\partial}{\partial \phi} \psi(\theta, \phi).
$$

Show that the ladder operators L±*, expressed in the spherical coordinate system, are*

$$
\langle \theta, \phi | L_{\pm} | \psi \rangle = \hbar e^{\pm i \phi} \Big(\pm \frac{\partial}{\partial \theta} + i \frac{1}{\tan \theta} \frac{\partial}{\partial \phi} \Big) \psi(\theta, \phi).
$$

(2 points)

b) It is the case that

$$
Y_1^1(\theta,\phi)=-\sqrt{\frac{3}{8\pi}}\sin\theta e^{i\phi},
$$

where one might note that $Y_1^1(\theta, \phi) = \langle \theta, \phi | l = 1, m = 1 \rangle$. Apply the ladder operators onto Y_1^1 , in *order to show that*

$$
Y_1^0(\theta,\phi) = \sqrt{\frac{3}{4\pi}} \cos \theta, \quad Y_1^{-1}(\theta,\phi) = \sqrt{\frac{3}{8\pi}} \sin \theta e^{-i\phi}.
$$

(4 points)

- **c)** In the following we take a closer look at these functions, and construct the corresponding *p*-orbitals. As the first step, we put $p_z(\theta, \phi) = Y_1^0(\theta, \phi)$. *Sketch the graph of* $|p_z|$ *in the x-z-plane, i.e., make a polar plot of* $|p_z(\theta, \phi = 0)|$. (Hence, at the angle θ with respect to the *z*-axis, put a point at the radius |*pz*(*θ*, 0)|.) *Next, sketch the shape of* |*pz*| *in* **R**³ *.* Rough sketches are enough (but you can use some plotting tool if you want to). **(2 points)**
- **d**) The complex valued functions $Y_1^{\pm 1}$ are a bit harder to interpret, but we can make linear combinations of them in order to get real-valued functions. *Determine the functions*

$$
p_x(\theta, \phi) = -\frac{1}{\sqrt{2}} (Y_1^1(\theta, \phi) - Y_1^{-1}(\theta, \phi)), \quad p_y(\theta, \phi) = -\frac{1}{i\sqrt{2}} (Y_1^1(\theta, \phi) + Y_1^{-1}(\theta, \phi)).
$$

(2 points)

(2 points)

Remark: Since p_x , p_y , p_z and Y_1^1 , Y_1^0 , Y_1^{-1} both span \mathcal{H}_l , it is a matter of convenience which one to use. It turns out that the *p*-orbitals p_x , p_y , p_z are convenient for molecular physics and chemistry. In particular, these orbitals distribute the particle^{[1](#page-1-0)} (the electron, in case of chemistry) in distinct manners over space, which is useful when describing the formation of chemical bonds. In \mathbf{c} you have already seen how p_x is distributed, and in the next problem we consider p_y and p_z .

f) Sketch the graph of $|p_x|$ in the x-z-plane, i.e., make a polar plot of $|p_x(\theta, \phi = 0)|$. Similarly, sketch the *graph of* $|p_y|$ *in the y-z-plane, i.e., make a polar plot of* $|p_y(\theta, \phi = \pi/2)|$ *.*

(2 points)

Remark: In case you are using some plot-tool, it is instructive to make 3D plots of $|p_x|$ and $|p_y|$ and compare with your plot of $|p_z|$.

g) The orbital p_z is an eigenfunction of L_z . However, neither p_x nor p_y are eigenfunctions of L_z (since both are linear combinations of eigenfunctions with different eigenvalues). *Show that p^x is an eigenfunction of L^x and that p^y is an eigenfunction of Ly. What are the eigenvalues?*

(4 points)

h) *Show that p^x is symmetric under rotations around the x-axis and show that p^y is symmetric under rotations around the y-axis.* Looking at the concrete functions p_x and p_y , these symmetries are not obvious (at least not to me). However, if you think about what you have learned, there is a very direct argument.

(2 points)

¹To be more precise, the *p*'s and the *Y*'s only give the angular part of the wave function, and are accompanied by radial wave-functions. The absolute value square of the joint wave-function gives the probability density of where to find the electron. For the p-orbitals, these distributions are oriented in a distinct manner around the atom. This can be compared with the *s*-orbital, where the probability distribution is rotation symmetric.