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1 Three-dimensional isotropic harmonic oscillator

The isotropic1 harmonic oscillator corresponds to the potential

V(x⃗) =
1
2

mω2r2, r = ∥x⃗∥,

for which the time-independent Schrödinger equation thus is

(
− h̄2

2m
∇2 +

1
2

mω2∥x⃗∥2
)

ψ = Eψ. (1)

In the following we first determine the eigenvalues, and next express the eigenfunctions in terms of
spherical harmonics and radial functions.

a) We begin by solving the eigenvalue problem by using the fact that the three-dimensional
oscillator can be regarded as a sum of three independent one-dimensional oscillators. We make
use of this by applying a separation of variables via the anstaz ψ(x⃗) = ψ(1)(x1)ψ

(2)(x2)ψ(3)(x3),
for Cartesian coordinates x⃗ = (x1, x2, x3). Use this ansatz in order to find the energy eigenvalues
En and the corresponding degeneracies dn. It is perfectly fine to look up the eigenvalues of a
one-dimensional Harmonic oscillator.

Hint: Recall that the degeneracy is the number of linearly independent eigenfunctions cor-
responding to the same eigenvalue. In order to calculate the degeneracy, one can think of
precisely n balls that should be distributed over three boxes. In how many ways can this be
done? Suppose that we put n1 balls in box 1. In how many ways can we then distribute the
remaining balls over boxes 2 and 3?

(6points)

b) The Hamiltonian is spherically symmetric (rotation invariant). Hence, we should be able to
express the eigenfunctions in terms of spherical harmonics and radial functions. In principle,
we could proceed via the eigenfunctions of the one-dimensional harmonic oscillators in a).
However, that would require us to calculate quite nasty integrals.2 In spherical coordinates,
(1) takes the form

1
2m

1
r2 L2ψ(r, θ, ϕ)− h̄2

2m
1
r2

d
dr

r2 d
dr

ψ(r, θ, ϕ) +
1
2

mω2r2ψ(r, θ, ϕ) = Enψ(r, θ, ϕ), (2)

where we use the eigenvalues En that we already have obtained in a). The angular momentum
L2 becomes a minor monstrosity in spherical coordinates, but for our purposes it suffices to
know that the normalised eigenfunctions of L2 are the spherical harmonics Ym

l , with L2Ym
l =

l(l + 1)h̄2Ym
l . Make the ansatz ψ(r, θ, ϕ) = R(r)Ym

l (θ, ϕ) and show that the radial equation (the

1Here, ‘isotropic’ means that spring constant is the same in all directions. In the case the spring constants would be
different, then V(x⃗) = 1

2 m(ω2
1x2

1 + ω2
2x2

2 + ω2
3x2

3).
2At least I believe that they would be nasty to calculate, but to be honest I have not tried.
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equation for R(r)) can be cast in the form of an effective model of a particle moving in a one-dimensional
potential (

− h̄2

2m
d2

dr2 + Veff(r)
)

u(r) = Enu(r), for u(r) = rR(r) (3)

and determine the effective potential Veff. Here, En are the eigenvalues that you obtained in a).

(3points)

c) We wish to find the eigenfunctions of the radial equation (3). One strategy for doing this is
to rewrite the equation into a form that someone else already has solved. The point is that
previous generations of physicists and mathematicians have worked like busy little beavers in
order to work out ‘special functions’ from various charaterising differential equations. In the
following we shall employ this strategy, and rewrite (3) as a special case of the generalised
Laguerre equation. The first step is to make the change of variables

x = γr2, r =
√

x
γ

, γ =
mω

h̄

and define

f (x) =u
(√ x

γ

)
.

Show that (3) can be rewritten as

2x
d2

dx2 f (x) +
d

dx
f (x)− l(l + 1)

2
1
x

f (x)− 1
2

x f (x) + (
3
2
+ n) f (x) = 0. (4)

(4points)

d) As the next step, make the ansatz

f (x) = x(l+1)/2e−x/2g(x).

Show that (4) results in

x
d2g
dx2 +

(
(l +

1
2
) + 1 − x

)dg
dx

+
1
2
(n − l)g(x) = 0. (5)

(5points)

e) Now you might ask why one should be more happy about (6) than (2). The answer is that (6)
belongs to those classes of equations where the solutions have been determined, namely the
generalized Laguerre equation(

x
d2

dx2 +
(
α + 1 − x

) d
dx

+ k
)

L(α)
k (x) = 0, (6)

which for non-negative integers k has the generalised Laguerre polynomials L(α)
k as solutions.

With α = l + 1
2 and k = 1

2 (n − l) we can thus conclude that the solution to (6) is g(x) =

L(l+ 1
2 )

1
2 (n−l)

(x). One could now look up the generalised Laguerre polynomials, if one wants to.

However, here we simply keep L(l+ 1
2 )

1
2 (n−l)

as a symbol. What we nevertheless should do is to

retrace our steps and obtain the solutions R(r) of the radial equation (3). Express the solutions

Rn,l in terms of L(l+ 1
2 )

1
2 (n−l)

. Just to be clear , you don’t have to try to find explicit expressions for
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L(l+ 1
2 )

1
2 (n−l)

; it is enough to express Rn,l in terms of L(l+ 1
2 )

1
2 (n−l)

. Also, there is no need to normalise the

wave-function.

(2points)

Remark: Strictly speaking, there is a hole in our argument. As mentioned above, k has to be
a non-negative integer. We know that n and l are integers, but that is not enough for 1

2 (n − l)
to be a non-negative integer. We furthermore need n ≥ l. Moreover, if n is even, then l must be
even, or if n is odd, then l also has to be odd. In principle we need to show this. However, we
skip this here. One may note that (6) can have solutions even if k is not an integer. However,
in these cases the solutions are typically not polynomials.
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