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1 Harmonic oscillators and coherent states

As we have seen in the lecture, the Hamilton operator of the harmonic oscillator can be rewritten
in terms of the annihilation and creation operators a and a† , a.k.a the ladder operators, as

H = h̄ω(a†a +
1
2

1̂), (1)

where

a =
1√
2
(X̃ + iP̃), a† =

1√
2
(X̃ − iP̃), X̃ =

√
mω

h̄
X, P̃ =

√
1

mh̄ω
P.

We also introduced the normalized eigenstates ϕn of H,

Hϕn = h̄ω(n +
1
2
)ϕn, n = 0, 1, 2, . . . ,

where we equivalently could regard ϕn as the eigenstates, Nϕn = nϕn, of the number operator
N = a†a. By each application of the ladder operators we can, so to speak, step down or up a single
rung of the ’ladder’ of eigenstates

aϕ0 = 0, aϕn =
√

nϕn−1, n = 1, 2, . . . and a†ϕn =
√

n + 1ϕn+1, n = 0, 1, 2, . . . .

a) The coherent states ψα are defined as the normalized states of the annihilation operator,

aψα = αψα, (2)

where it turns out to exist one such coherent state for each complex number α ∈ C. Relate the
real and imaginary parts of α to the expectation value ⟨X̃⟩α = ⟨ψα|X̃ψα⟩ of the dimensionless position
operator X̃ and to the expectation value ⟨P̃⟩α = ⟨ψα|P̃ψα⟩ of the dimensionless momentum operator P̃.

Hint: Recall that X̃ and P̃ are Hermitian operators, so their expectation values are real.

(2points)

b) In the following, we wish to determine the variance of the position and momentum for the
coherent states, and as a step towards this lofty goal: Show that

⟨ψα|a2ψα⟩ = α2, ⟨ψα|(a†)2ψα⟩ = (α∗)2, ⟨ψα|a†aψα⟩ = |α|2, ⟨ψα|aa†ψα⟩ = |α|2 + 1.

Hint: Recall that generally ⟨η|Cη⟩∗ = ⟨Cη|η⟩ and ⟨Cη|η⟩ = ⟨η|C†η⟩, which we can combine
to ⟨η|Cη⟩∗ = ⟨η|C†η⟩. Recall also that the inner product ⟨η|χ⟩ is linear in its second argument,
such that ⟨η|zχ⟩ = z⟨η|χ⟩ for any complex number z, while it is anti-linear in its first argument
so that ⟨zη|χ⟩ = z∗⟨η|χ⟩.

(4points)
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c) Show that the coherent states satisfy the uncertainty relation Var[X]Var[P] ≥ h̄2/4 with equality.

Hint: Note that we here ask for the variances of X and P, rather than of X̃ and P̃, so keep in
mind the relation between these.

Remark: This result means that the coherent states are minimum uncertainty wave-packets.
In other words, for each point in phase space (the combination of position and momentum)
the corresponding coherent state is as sharply focused as it can be. (3points)

d) The definition (2) only implicitly defines the coherent states (but as we have seen above, one
can get quite far with that). However, here we want to find an explicit description. More
precisely, we wish to expand the coherent states ψα in terms of the orthonormal eigenbasis
{ϕn}n=0,1,2,.... Determine the expansion coefficients fn(α) and normalization constant C(α), such that

ψα = C(α)
∞

∑
n=0

fn(α)ϕn. (3)

Hint: Recall that if ∑n cnϕn = 0 for a basis {ϕn}n, then cn = 0. Try to find a recursion relation
for fn(α) and keep in mind that aϕ0 = 0. (4points)

e) Determine the overlap |⟨ψβ|ψα⟩|2 for α, β ∈ C. Make sure that you find a closed expression, i.e., no
infinite sums. Are two coherent states ever orthogonal to each other?

(2points)

f) In d) we have obtained an explicit description of the coherent states. However, it is also useful
to know the wave-function. Equation (3) does actually give the wave-function, but only as an
infinite sum of rather complicated objects. It turns out that the coherent states have rather
simple wave-functions. In principle, we could evaluate the sum in (3), but that would require
detailed knowledge about Hermite polynomials. We will instead follow an easier path, based
on the expression a = 1√

2
(X̃ + iP̃). Written in terms of differential operators, the defining

equation aψα = αψα becomes

1√
2
(x̃ +

d
dx̃

)ϕα = αϕα, (4)

where we have used the identification1 of P̃ with −i d
dx̃ . Show that the normalized solution of (4)

takes the form

ϕα(x̃) =
1

π1/4 e−
1
2

(
x̃−qRe(α)

)2
+irIm(α)x̃

and determine the real numbers q and r.

Hint: For the normalization, recall the Gaussian integral
∫ ∞
−∞ e−α(x̃−β)2

dx̃ =
√

π
α . (3points)

g) So far we have determined properties of the coherent states as such. Next, we wish to know
how coherent states evolve in the Harmonic oscillator (1). Show that if the Harmonic oscillator
initially is put into a coherent state, then it remains in a coherent state, up to a global phase factor.2

Moreover, for an initial coherent state ψα(0), determine the evolution ψ(t) = eiχ(t)ψα(t) in terms of the
complex number α(t) and the (real) phase χ(t).

Hint: Recall from the lecture how one can determine the time evolution of a state expanded
in the eigenbasis of the Hamiltonian. (2points)

1One may note that we identify P with −ih̄ d
dx , while the dimensionless operator P̃ is identified with −i d

dx̃ , where

x̃ =
√

mω
h̄ x.

2Recall that two wave-functions that differ only by a global phase factor represent the same physical state.
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Remark: Because of the uncertainty relation, there is no really direct quantum mechanical coun-
terpart to the classical phase space. However, the coherent states do in some sense correspond to as
sharp points in phase space as quantum mechanics allows. For each point in phase space there exists
a coherent state with corresponding expectation values of position and momentum, and where the
joint uncertainty of these observables is minimal.
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