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In this sheet we will use the Dirac notation (or bra-ket notation) quite extensively, where each
element of the Hilbert space is denoted by a ket |ψ⟩, and each dual vector is denoted by a bra ⟨ψ|.
Once getting used to it, it is a convenient notation.

1 The virtues of the completeness relation

For any orthonormal basis {|en⟩}n the completeness relation (or resolution of identity) is

∑
n
|en⟩⟨en| = 1̂.

This relation may look rather innocent, but it is actually quite useful. In particular, it allows us
to transform between abstract objects in Hilbert spaces, and their representations in a basis. For
example, recall from the lecture that for an operator Q, we have

Q = 1̂Q1̂ = ∑
n
|en⟩⟨en|Q ∑

n′
|en′⟩⟨en′ | = ∑

n,n′
|en⟩Qn,n′⟨en′ |, Qn,n′ = ⟨en|Q|en′⟩,

which thus directly tell how we should translate back and forth between operators and their matrix
representations.

a) Suppose that we have a matrix representation Qe of an operator Q with respect to the ON-
basis {|en⟩}n. How could we calculate the matrix representation Qa with respect to another ON-basis
{|ak⟩}k?

(2points)

b) Let {|ak⟩}k and {|bl⟩}l be two orthonormal bases of the same Hilbert space. Show that the
matrix U = [⟨ak|bl⟩]k,l is unitary.

(2points)

c) Let Q be Hermitian operator. Let {|k⟩}K
k=1 be an orthonormal basis. We let the matrix M be

the matrix representation of Q in the {|k⟩}k basis. Show that if the column vector u =

u1
...

uK

 is an

eigenvector of M with eigenvalue λ, then |ψ⟩ = ∑K
k=1 |k⟩uk is an eigenvector to Q with eigenvalue λ.

Conversely, show that if |ψ⟩ is an eigenvector to Q with eigenvalue λ, then the representation of |ψ⟩ in
the basis {|k⟩}K

k=1 is an eigenvector of M with eigenvalue λ.

(2points)
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2 Unitary operators

a) Consider the following three operators

σx = |0⟩⟨1|+ |1⟩⟨0|, σy = −i|0⟩⟨1|+ i|1⟩⟨0|, σz = |0⟩⟨0| − |1⟩⟨1|.

where {|0⟩, |1⟩} is an orthonormal basis. Show that these three operators are both Hermitian and
unitary.

Hint: You can use whichever of the equivalent characterisations of unitary operators stated
in the lecture notes. One of the standard characterisations becomes less painful to check if one
uses the Hermiticity.

(3points)

b) In the lecture notes it was claimed the all eigenvalues of a unitary operator has eigenvalue
with absolute value 1. Prove this claim. What is the consequence for the eigenvalues of an operator
that is both Hermitian and unitary?

(2points)

c) Consider the operator σx from a). From a) we know that this operator is Hermitian. Determine
the eigenvalues, as well as the corresponding normalized eigenvectors, of σx. Express the eigenvectors
in terms of {|0⟩, |1⟩}. How do your results compare with b)?

Hint: Exercise 1 c) might be useful.

(3points)

d) Let Φ : Rn → Rn be an invertible transformation with a Jacobian that is equal to 1 at every
point in Rn. On the Hilbert space L2(R2) we consider the mapping UΦ defined by

[UΦψ](x) = ψ
(
Φ−1(x)

)
, x ∈ Rn.

Show that UΦ is unitary. You can use any of the equivalent characterisations of unitary operators
listed in the lecture notes.

Hint: Recall that for a change of variables, the Jacobian gives the change of the volume
element in the integral.

(2points)

3 Operator identities

For a Hermitian operator A, let A|k⟩ = ak|k⟩, where {|k⟩}K
k=1 is an orthonormal basis. We assume

that A is non-degenerate, so that all the eigenvalues ak are different.

a) Show that
(A − aK1̂)(A − aK−11̂) · · · (A − a21̂)(A − a11̂) = 0,

where ‘0’ denotes the zero operator.

Hint: What happens with the different terms in the above product when you apply an
eigenvector to A? Recall that the zero operator is the operator that maps every vector to the
zero vector. Is there maybe som nice ON-basis that you could expand a general vector in?

(2points)
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b) Show that

A − aK1̂
al − aK

A − aK−11̂
al − aK−1

· · · A − al+11̂
al − al+1

A − al−11̂
al − al−1

· · · A − a21̂
al − a2

A − a11̂
al − a1

= |l⟩⟨l|. (1)

Note that the factor with A − al is ‘missing’ in the above product. A more compact way to
write the product in (1) is ΠK

k=1:k ̸=l
A−ak 1̂
al−ak

.

Hint: As said previously, the completeness relation is a very convenient tool.

(2points)

Remark: What (1) tells us is that the product on the left hand side is nothing but the projector
onto the one-dimensional subspace spanned by the eigenvector |l⟩. Now you might wonder
why one should care about the monstrosity on the left hand side of (1), when one has the nice
and simple expression on the right hand side. Equation (1) provides a method to explicitly
express (the projectors onto) the eigenstates (in terms of the operator A and its eigenvalues),
as opposed to implicitly determining them as the solutions to the equation (A − al)|l⟩ = 0. As
a side remark, analogous relations still hold if there are degeneracies. We only assumed the
non-degenerate case in order to simplify things.

4 Gold star exercise: Almost a resolution of identity for coherent states

This exercise gives absolutely no points, but if you want to know more about
coherent states, this is the exercise for you!

In the previous exercise sheet you (hopefully) derived the expansion ψα =

e−|α|2/2 ∑∞
n=0

αn
√

n!
ϕn of the coherent state wave-function ψα in terms of the wave-

functions ϕn of the eigenstates of the Harmonic oscillator Hamiltonian. In the
following, we let |n⟩ denote the eigenstates of the harmonic oscillator, i.e.,
ϕn(x) = ⟨x|n⟩. We similarly let |α⟩ be the ket that corresponds to the coherent
state, such that ψα(x) = ⟨x|α⟩. In terms of these kets, the expansion reads.

|α⟩ = e−|α|2/2
∞

∑
n=0

αn
√

n!
|n⟩.

It turns out that the family of coherent states {|α⟩}α∈C, although not forming an orthonormal basis,
nevertheless satisfies kind of a resolution of identity∫

|α⟩⟨α| d2α = π1̂. (2)

Hence, it is a resolution of identity, up to the extra factor π. Here, the integral
∫
· · · d2α means that

we integrate the real and imaginary part of α as two independent real numbers.
The task is to prove (2).

Hint: Change to polar coordinates. In the radial part you can make another change of variables
such that you reach the integral that defines the Gamma function Γ(z) =

∫ ∞
0 e−ssz−1ds. One may

recall that Γ(m) = (m − 1)!
(0points)

Remark: There is a generalization of the notion of bases that is referred to as ‘frames’, where
this set of vectors can be used to represent general vectors (like we expand vectors in a basis) but
without the requirement of linear independence. The relation (2) shows that the set of coherent
states {|α⟩}α∈C is a ‘tight’ frame. The general condition for a set {|ψx⟩}x to be a frame is that there
exist constants b ≥ a > 0 such that b1̂ ≥ ∑x |ψx⟩⟨ψx| ≥ a1̂ (where the sum equally well could be an
integral). In the case of tight frames, we have b = a, which makes the frame easier to work with. The
concept of frames has been popular in signal analysis, but many of these ideas can also be applied
in quantum mechanics.
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