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Exercise sheet 7 (Due: Monday November, 25th.)

7.1 Taming an in�nity

In the lecture we learned that the expected electric �eld, 〈 ~E(~x)〉, at any given point
~x is zero for any Fock state with respect to the momentum modes (and thus also for the

vacuum state), but that the strength of the �uctuations in the �eld, 〈‖ ~E(~x)‖2〉, diverges
to in�nity for the vacuum state. Since then you have most likely lost sleep from fear that
you suddenly might explode due to some large vacuum �uctuations. In order to put your
fears to rest, we will here show that this in�nity can be tamed. Recall that one can think
of 〈 ~E(~x)〉 and 〈‖ ~E(~x)‖2〉 as the e�ects on a point-charge. However, let us now instead
consider the force

~F =

∫
ρ(~x) ~E(~x)d3x, (1)

on some charge distribution ρ(~x), and where the electric �eld operator is1

~̂E(~x) = −i
√

2~π
L3

∑
~k,λ

√
ωk~eλ(~k)(a†~k,λe

−i~k·~x − a~k,λe
i~k·~x). (2)

(a) In the lecture we showed that expectation value of ~E is zero for any Fock-state

|n1, n2, . . .〉 for all the (~k, λ)-modes. Here we wish to show the same for the force ~F .

Hence, show that 〈n1, n2, . . . |~F |n1, n2, . . .〉 = 0 for any Fock-state |n1, n2, . . .〉. (3 points)

Remark: As a special case, we thus get that the expectation of the force due to the
vacuum state is zero.

(b) Now we turn to the expectation value of ‖~F‖2 with respect to the vacuum state |vec〉.
This measures the magnitude of the �uctuations in the vacuum �eld. Show that

〈vac| ‖~F‖2 |vac〉 =
2~π
L3

∑
~k

ωk|ρ̃(~k)|2, (3)

where ρ̃(~k) =
∫
ρ(~x)ei

~k·~xd3x. (5 points)

Remark: This result means that if |ρ̃(~k)|2 goes to zero su�ciently fast as ‖~k‖ → ∞,
then the sum (3) becomes �nite. Hence, the in�nity can be tamed. Note also that the more

smeared out ρ(~x) is, the faster the Fourier transform ρ̃(~k) decays, and thus the smaller
the e�ect of the �uctuations.

1This is the ninja-edited version.
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7.2 The Casimir force

One can wonder whether the vacuum energy only is a mathematical absurdity without
any physical meaning. However, one can argue that the change in the vacuum energy
actually has physical consequences, in terms of the Casimir force (or Casimir e�ect). Here
we shall investigate this in a simpli�ed one-dimensional model.
Consider one-dimensional �cavity� of length L, where we
insert a plate p that divides the cavity into two parts.
We thus get two cavities, one of length r and one of
length L − r. Now consider the smaller cavity of length
r. Standing waves in that cavity can be formed at fre-
quencies ωk = kπ

r
for k = 1, . . .. On these modes we have

the annihilation operators ak,λ and creation operators a†k,λ
(where λ is the polarization), and we get the Hamiltonian

H =
∑

k,λ ~ωk(a
†
k,λak,λ + 1

2
1̂). For the vacuum state |vac〉,

the expectation value of the energy is L/2 L/2

r L-r

p0 L

E(r) = 〈vac|H|vac〉 = ~
∑

k ωk = ~
∑

k
πk
r
. For the combined cavities r and L − r, the

vacuum energy thus is E(r) + E(L − r), which we know is in�nite. Recall that absolute
energies often do not have much meaning, but that energy di�erences do. So, let us com-
pare with the case where we insert the wall in the middle of the cavity.2 The di�erence
in energy is ∆E(r) = E(r) +E(L− r)− 2E(L/2). However, we do not really gain much,
since we here have an expression of the form ∞ +∞− 2∞. We will now regularize the-
se in�nities by introducing a cuto�-function g(ω) = e−ξω, where the regularized energy
function is3

E(r, ξ) = ~
∞∑
k=1

ωkg(ωk) = ~
∞∑
k=1

πk

r
e−ξ

πk
r . (4)

The function E(r, ξ) is �nite for all ξ > 0, and E(r, 0) = E(r). The role of the cuto�-
function is to gradually cut o� the high frequencies. As ξ goes to zero, the higher up in
frequency we move the cuto�.

(a) A good thing about this particular cuto� function is that we can �nd a closed expres-
sion for the regularized energy. Show that

E(r, ξ) =
~π
r

e−ξ
π
r

(1− e−ξ πr )2
. (5)

(3 points)

(b) We are interested in what happens for small values of ξ (i.e., when the cuto� only
signi�cantly a�ects very high frequencies).

Show that

E(r, ξ) = α
r

ξ2
+ β

1

r
+O(ξ) (6)

and determine the constants α and β. (5 points)

2There is nothing special with putting the wall in the middle. Any �xed reference position would do.
3Do you think that this regularization business is cheating? Well, welcome to the world of quantum �eld theory!
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(c) We de�ne the regularized energy di�erence

∆E(r, ξ) = E(r, ξ) + E(L− r, ξ)− 2E(L/2, ξ). (7)

We now wish to determine this energy di�erence as a function of r > 0 in the limit where
we take ξ → 0 (thus take the cuto� to in�nity), and where we make the larger cavity
in�nitely large L → ∞ (so that we get the e�ective force between p and wall 0). Show
that

lim
L→∞

lim
ξ→0

∆E(r, ξ) = −γ
r
, (8)

and determine the constant γ > 0. What is thus the e�ective force between the plate p and

the wall 0, as a function of of the distance r? Is the force attractive or repulsive between

the wall and the plate? (4 points)

Remark: With a more accurate model, where one treats the walls and the plate as
extended surfaces, one �nds that the force is proportional to r−4. The existence of the
Casimir e�ect has been con�rmed by experiments.
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